ACO for Parameter Settings of E.coli Fed-batch Cultivation Model

Stefka Fidanova, Olympia Roeva Bulgarian Academy of Sciences

Escherichia coli

- Interleukins
- Insulin
- Interferon's
- Enzymes
- Growth factors

Problem Formulation

Problem Formulation

- X biomass concentration [g/l]
- S substrate concentration [g/l]
- F_{in} feeding rate [*I/h*]
- V bioreactor volume [/]
- S_{in} substrate concentration in solution
- μ_{max} growth rate [h⁻¹]
- k_s saturation constant [g/l]
- Y_{S/X} yield coefficient

Objective Function

y=(X,S)

Hausdorff Distance

$d_{\mathrm{H}}(X,Y) = \max\{\sup_{x \in X} \inf_{y \in Y} d(x,y), \sup_{y \in Y} \inf_{x \in X} d(x,y)\},\$

Metaheuristics

- A metaheuristics are methods for solving a very general class of <u>computational</u> problems by combining user-given <u>black-box procedures</u> in the hope of obtaining a more efficient or more robust procedure. The name combines the <u>Greek</u> prefix "<u>meta</u>" ("beyond", here in the sense of "higher level") and "heuristic" (from ευρισκειν, *heuriskein*, "to find").
- Metaheuristics are generally applied to problems for which there is no satisfactory problem-specific <u>algorithm</u> or heuristic; or when it is not practical to implement such a method. Most commonly used metaheuristics are targeted to <u>combinatorial optimization</u> problems, but of course can handle any problem that can be recast in that form, such as solving <u>boolean equations</u>

Ant Colony Optimization

Graph of the Problem

Ant Colony Optimization

Procedure ACO Begin

initialize the pheromone while stopping criterion not satisfied do position each ant on a starting node repeat for each ant do chose next node

end for

until every ant has build a solution update the pheromone end while end

Three-partitive Graph

Transition Probability

$$\operatorname{Prob}_{ij}^{k}(t) = \begin{cases} \frac{\tau_{ij} \eta_{ij}}{\sum_{b \in allowed_{k}(t)} \tau_{ib} \eta_{ib}} \\ 0 \end{cases}$$

if $j \in allowed_k(t)$

otherwise

Pheromone Updating

 $\tau_{ij} \leftarrow \rho \tau_{ij} + \Delta \tau_{ij}$ $0 < \rho < 1$ – evaporation

ACO Parameters

Parameter	Value
Number ants	20
Initial pheromone	0.5
evaporation	0.1

Computational Results

	Method	Average	Worst	Best
ACO LS	-	4.8866	6.7700	3.3280
	Hausdorff	2.3875	4.1290	1.7218
ACO Hdf	-	1.8744	2.5322	1.6425
	Least sqr	3.9706	4.4283	3.4276

Computational Results biomass

Computational Results Substrate

Thank for Your Attention

